You are leaving Medscape Education
Cancel Continue
Log in to save activities Your saved activities will show here so that you can easily access them whenever you're ready. Log in here CME & Education Log in to keep track of your credits.
 

Table 1.  

Characteristic Unweighted, No. Weighteda
Age, mean, y 7,784 44.5 (43.8–45.2)
Sex
Male 3,704 48.5 (47.3–49.7)
Female 4,080 51.5 (50.3–52.7)
Race/ethnicity
Non-Hispanic white 2,882 65.5 (59.9–70.6)
Non-Hispanic black 1,606 10.9 (8.5–13.9)
Hispanic 2,111 15.2 (11.7–19.4)
Non-Hispanic other 1,185 8.4 (7.1–10.1)
Education level
High school diploma or less 3,247 33.4 (30.1–36.9)
Some college 2,447 33.3 (31.2–35.5)
College graduate or above 2,090 33.3 (29.4–37.5)
Marital status
Married or coupled 4,760 64.9 (62.7–67.0)
Widowed, divorced, or separated 1,387 15.3 (13.9–16.7)
Never married 1,637 19.8 (18.0–21.8)
Family income-to-poverty ratio
≤1.3 2,755 24.4 (21.4–27.6)
>1.3 to ≤1.85 1,082 11.7 (10.5–13.0)
>1.85 3,947 64.0 (60.2–67.6)
Moderately severe or severe depression 235 2.6 (2.2–3.1)
Binge drinking once a month or moreb 1,217 17.8 (16.1–19.5)
Prescription sleep aid use 267 4.3 (3.5–5.2)
Sleep duration, h
<6 862 9.0 (8.2–9.9)
6 to <7 1,571 18.5 (17.3–19.8)
7 to <8 2,135 30.4 (28.9–31.9)
8 to <9 2,112 28.6 (27.5–29.7)
≥9 1,104 13.5 (12.3–14.7)
Overall CVH score
Mean 6,985c 8.0 (7.9–8.1)
Ideal (5–7 components) 1,156 17.8 (16.3–19.4)
Intermediate (3–4 components) 2,947 42.1 (40.9–43.3)
Poor (0–2 components) 3,200 40.1 (38.4–41.9)

Table 1. Estimated Weighted Population Characteristics and Prevalence of Sleep and Cardiovascular Health Among US Adults Aged 20–75 (N = 7,784), National Health and Nutrition Examination Survey, 2013–2016

Abbreviations: CI, confidence interval; CVH, cardiovascular health.
a Values are percentage (95% confidence interval) unless otherwise indicated. Because of survey weighting, proportions differ from calculations based on the unweighted number. Percentages may not total to 100% because of rounding.
b Binge drinking was defined as more than 4 drinks per day for women or more than 5 drinks per day for men.
c Mean score excluded those who were missing 1 or more CVH components.

Table 2.  

Component Definitiona Weighted Sleep Duration, mean or % (95% CI) P Valueb
<6 h 6 to <7 h 7 to <8 h 8 to <9 h ≥9 h
Overall CVH scorec
Mean NA 7.4 (7.2–7.6) 7.9 (7.8–8.0) 8.2 (8.1–8.4) 8.1 (7.9–8.3) 7.7 (7.4–8.0) <.001
Ideal 5–7 11.1 (8.3–14.7) 17.9 (15.9–20.0) 19.1 (17.1–21.3) 20.1 (17.8–22.6) 15.5 (12.7–18.7) .01
Intermediate 3–4 41.2 (36.0–46.6) 41.5 (38.5–44.7) 43.6 (40.6–46.7) 41.9 (39.3–44.7) 41.0 (37.6–44.5)
Poor 0–2 47.8 (43.0–52.6) 40.6 (37.9–43.3) 37.3 (34.4–40.2) 38.0 (35.1–41.0) 43.6 (39.4–47.8)
Smoking
Ideal Never smoker or quit ≥12 months ago 47.9 (41.7–54.2) 56.0 (52.2–59.8) 63.2 (60.5–65.7) 60.3 (57.1–63.4) 57.0 (52.5–61.4) <.001
Intermediate Smoked ≥100 cigarettes and quit <12 months ago 21.6 (17.7–25.9) 21.6 (18.8–24.8) 22.0 (19.4–24.7) 23.7 (21.3–26.2) 19.2 (16.4–22.3)
Poor Current smoker 30.6 (25.6–36.1) 22.4(19.4–25.7) 14.9 (12.7–17.5) 16.0 (13.7–18.7) 23.8 (20.3–27.8)
Body mass index (kg weight/height in m2)
Mean NA 30.6 (30.1–31.1) 29.6 (29.0–3.2) 29.1 (28.6–29.5) 29.0 (38.4–29.5) 29.0 (28.4–29.7) <.001
Ideal <25.0 kg/m2 23.3 (19.3–27.8) 27.0 (23.9–30.4) 30.1 (27.6–32.8) 30.4 (26.5–34.6) 31.2 (27.3–35.3) .03
Intermediate 25.0–29.9 kg/m2 30.1 (26.0–34.7) 32.6 (29.6–35.7) 32.9 (30.1–35.9) 32.7 (30.2–35.3) 30.3 (27.0–33.9)
Poor ≥30.0 kg/m2 46.6 (41.6–51.6) 40.4 (37.0–43.8) 37.0 (34.2–39.8) 36.9 (33.2–40.8) 38.5 (34.0–43.3)
Dietd
Ideal 4–5 components 0 0 0 0 0.1 (0.0–0.6) .10
Intermediate 2–3 components 22.3 (17.2–28.3) 24.4 (21.2–28.0) 26.8 (23.9–29.9) 25.7 (22.7–28.9) 20.2 (17.4–23.2)
Poor 0–1 components 77.7 (71.7–82.8) 75.6 (72.0–78.8) 73.2 (70.1–76.1) 74.3 (71.1–77.3) 79.7 (76.6–82.5)
Physical activity, min/wk
Mean NA 168.9 (144.0–193.7) 165.9 (150.8–180.9) 165.6 (147.2–184.0) 171.8 (154.1–189.5) 166.6 (136.0–197.2) .98
Ideal ≥150 min moderate and/or vigorous or ≥75 min vigorous 34.0 (29.7–38.6) 39.1 (35.8–42.5) 43.1 (39.3–47.0) 41.9 (38.4–45.5) 37.2 (32.0–42.7) .03
Intermediate 1–149 min moderate and/or vigorous or 1–74 min vigorous 17.1 (14.3–20.3) 16.7 (13.9–20.0) 16.3 (14.2–18.7) 19.2 (17.0–21.7) 14.6 (11.7–18.1)
Poor None 49.0 (45.3–52.7) 44.2 (40.5–47.9) 40.6 (37.5–43.8) 38.9 (35.3–42.6) 48.2 (42.9–53.6)
Blood pressure, mm Hg
Systolic, mean NA 122.3 (120.7–123.8) 121.3 (120.2–122.4) 120.5 (119.6–121.4) 121.3 (120.4–122.2) 121.8 (120.3–123.2) .25
Diastolic, mean NA 71.9 (70.8–73.1) 70.9 (70.1–71.7) 70.6 (69.8–71.4) 70.5 (69.6–71.3) 70.3 (69.1–71.5) .16
Ideal <120/<80 untreated 43.7 (39.5–48.0) 44.0 (40.7–47.3) 47.1 (43.6–50.6) 46.7 (44.2–49.2) 42.0 (38.3–45.8) .24
Intermediate SBP 120–139 or DBP 80–89 or treated to goal 46.0 (41.6–50.5) 48.3 (45.2–51.5) 45.5 (42.1–49.0) 45.0 (42.7–47.2) 48.1 (43.4–52.8)
Poor SBP ≥140 or DBP ≥90 10.3 (7.1–14.8) 7.7 (6.2–9.6) 7.4 (6.3–8.7) 8.3 (6.7–10.3) 9.9 (7.0-13.9)
Total cholesterol, mg/dl
Mean NA 191.9 (187.6–196.3) 189.6 (186.6–192.7) 192.1 (190.0–194.2) 195.4 (192.1–198.7) 193.0 (188.5–197.4) .07
Ideal <200 untreated 50.6 (45.3–55.9) 55.4 (51.3–59.4) 50.1 (46.9–53.3) 49.0 (44.9–53.2) 48.6 (44.7–52.5) .02
Intermediate 200–239 or treated to goal 39.3 (34.5–44.4) 34.5 (30.9–38.1) 38.5 (35.1–42.1) 36.2 (33.0–39.5) 36.7 (32.3–41.3)
Poor ≥240 10.1 (8.3–12.4) 10.2 (8.2–12.5) 11.4 (9.5–13.5) 14.8 (12.7–17.1) 14.7 (11.5–18.6)
Hemoglobin A1c, %
Mean NA 5.7 (5.6–5.7) 5.6 (5.6–5.7) 5.5 (5.5–5.6) 5.6 (5.5–5.6) 5.6 (5.5–5.7) .01
Ideal <5.7 untreated 66.1 (61.1–70.9) 70.8 (67.8–73.7) 74.3 (71.6–76.8) 72.9 (70.1–75.5) 65.8 (59.7–71.4) .008
Intermediate 5.7–6.4 or treated to goal 30.2 (25.5–35.3) 26.0 (23.1–29.1) 23.2 (21.0–25.6) 24.5 (22.2–26.9) 30.8 (25.6–36.6)
Poor ≥6.5 3.7 (2.5–5.4) 3.2 (2.4–4.4) 2.5 (1.7–3.7) 2.6 (1.9–3.5) 3.4 (2.3–4.9)

Table 2. Weighted Mean and Population Prevalence of Overall CVH Score and Individual Components Stratified By Sleep Duration Among US Adults Aged 20–75 (N = 7,784), National Health and Nutrition Examination Survey, 2013–2016

Abbreviations: CI, confidence interval; CVH, cardiovascular health; DBP, diastolic blood pressure; NA, not applicable; SBP, systolic blood pressure.
a Component definitions and scoring used were those previously described by Lloyd-Jones et al. with modification of hemoglobin A1c as a proxy for fasting plasma glucose [13]. The specific definitions used in this analysis are presented.
b P value calculated from adjusted Wald or Pearson’s χ2 tests that were corrected for the survey design.
c The CVH score comprises 7 components: smoking, body mass index, diet, physical activity, blood pressure, total cholesterol, and hemoglobin A1c (used as a proxy for fasting plasma glucose) [13]. Each component was scored as ideal (2 points), intermediate (1 point), or poor (0 points) based on guidelines described by Lloyd-Jones et al [13]. The continuous overall CVH score was calculated by summing the 7 components scores. Ideal CVH was defined as meeting ideal criteria for 5 to 7 of the components.
d American Heart Association Healthy Diet Score includes ≥4.5 cups of fruits or vegetables a day; two 3.5-ounce servings of fish per week; ≥3 one-ounce equivalent servings of whole grains per day; <1,500 mg of sodium per day; ≤36 ounces of sugar-sweetened beverages per week.

Table 3.  

Sleep Duration, No. of Hours Model 1a Estimate (95% CI) Model 2b Estimate (95% CI) Model 3c Estimate (95% CI) Model 4d Estimate (95% CI)
Odds of ideal CVH    
<6 0.53 (0.39 to 0.72) 0.63 (0.45 to 0.87) 0.56 (0.41 to 0.77) 0.65 (0.47 to 0.90)
6 to <7 0.90 (0.76 to 1.07) 0.97 (0.80 to 1.18) 0.91 (0.76 to 1.09) 0.97 (0.80 to 1.19)
7 to <8 1 [Reference]
8 to < 9 1.03 (0.82 to 1.28) 0.95 (0.74 to 1.23) 1.04 (0.84 to 1.30) 0.96 (0.75 to 1.23)
≥9 0.75 (0.58 to 0.98) 0.70 (0.53 to 0.93) 0.78 (0.60 to 1.02) 0.72 (0.55 to 0.94)
Mean differences in CVH score, mean
<6 −0.80 (−1.04 to −0.55) −0.48 (−0.69 to −0.27) −0.69 (−0.94 to −0.45) −0.41 (−0.61 to −0.20)
6 to <7 −0.31 (−0.45 to −0.17) −0.21 (−0.34 to −0.08) −0.3 (−0.44 to −0.16) −0.2 (−0.33 to −0.06)
7 to <8 [Reference]
8 to < 9 −0.15 (−0.36 to 0.06) −0.18 (−0.39 to 0.03) −0.12 (−0.32 to 0.07) −0.16 (−0.36 to 0.03)
≥9 −0.51 (−0.78 to −0.24) −0.38 (−0.63 to −0.13) −0.45 (−0.70 to −0.19) −0.33 (−0.57 to −0.09)

Table 3. Association Between Sleep Duration Categories and Ideal CVH in Sequential Adjusted Logistic and Linear Regression Models Among US Adults Aged 20–75 (N = 7,784), National Health and Nutrition Examination Survey, 2013–2016 

Abbreviations: CI, confidence interval; CVH, cardiovascular health; OR, odds ratio.
a Model 1: Unadjusted.
b Model 2: Adjusted for demographic factors of weighted age quartiles, sex, race/ethnicity, education level, and family income-to-poverty ratio category.
c Model 3: Adjusted for social and clinical factors of depression status, binge alcohol use, and prescription sleep aid use.
d Model 4: Fully adjusted model including factors from Models 2 and 3.

CME / ABIM MOC

Association Between Sleep Duration and Ideal Cardiovascular Health Among U.S. Adults, National Health and Nutrition Examination Survey, 2013-2016

  • Authors: Rebecca E. Cash, PhD, MPH; Chloe M. Beverly Hery, MS; Ashish R. Panchal, MD, PhD; Julie K. Bower, PhD, MPH, FAHA
  • CME / ABIM MOC Released: 6/11/2020
  • THIS ACTIVITY HAS EXPIRED FOR CREDIT
  • Valid for credit through: 6/11/2021
Start Activity


Target Audience and Goal Statement

This activity is intended for primary care physicians, cardiologists, sleep medicine specialists, and other physicians who treat and manage patients at risk for cardiovascular disease.

The goal of this activity is to evaluate the effects of sleep duration on the cardiovascular risk profile.

Upon completion of this activity, participants will be able to:

  • Assess the relationship between sleep duration and the risk for cardiovascular events
  • Distinguish the proportion of US adults getting the recommended hours of sleep
  • Analyze variables in the cardiovascular risk profile affected by sleep duration
  • Evaluate how sleep duration can affect the cardiovascular risk profile among adults


Disclosures

As an organization accredited by the ACCME, Medscape, LLC, requires everyone who is in a position to control the content of an education activity to disclose all relevant financial relationships with any commercial interest. The ACCME defines "relevant financial relationships" as financial relationships in any amount, occurring within the past 12 months, including financial relationships of a spouse or life partner, that could create a conflict of interest.

Medscape, LLC, encourages Authors to identify investigational products or off-label uses of products regulated by the US Food and Drug Administration, at first mention and where appropriate in the content.


Authors

  • Rebecca E. Cash, PhD, MPH

    Division of Epidemiology
    The Ohio State University College of Public Health
    Columbus, Ohio
    The National Registry of Emergency Medical Technicians
    Columbus, Ohio
    Department of Emergency Medicine
    Massachusetts General Hospital
    Boston, MA

    Disclosures

    Disclosure: Rebecca E. Cash, PhD, MPH, has disclosed no relevant financial relationships.

  • Chloe M. Beverly Hery, MS

    Division of Epidemiology
    The Ohio State University College of Public Health
    Columbus, Ohio

    Disclosures

    Disclosure: Chloe M. Beverly Hery, MS, has disclosed no relevant financial relationships.

  • Ashish R. Panchal, MD, PhD

    Division of Epidemiology
    The Ohio State University College of Public Health
    Columbus, Ohio
    The National Registry of Emergency Medical Technicians
    Columbus, Ohio
    Department of Emergency Medicine
    The Ohio State University Wexner Medical Center
    Columbus, Ohio

    Disclosures

    Disclosure: Ashish R. Panchal, MD, PhD, has disclosed no relevant financial relationships.

  • Julie K. Bower, PhD, MPH, FAHA

    Division of Epidemiology
    The Ohio State University College of Public Health
    Columbus, Ohio

    Disclosures

    Disclosure: Julie K. Bower, PhD, MPH, FAHA, has disclosed the following relevant financial relationships:
    Owns stock, stock options, or bonds from: Vertex Pharmaceuticals
    Employed by a commercial interest: Vertex Pharmaceuticals

CME Author

  • Charles P. Vega, MD

    Health Sciences Clinical Professor of Family Medicine
    University of California, Irvine, School of Medicine
    Irvine, California

    Disclosures

    Disclosure: Charles P. Vega, MD, has disclosed the following relevant financial relationships:
    Served as an advisor or consultant for: Johnson & Johnson Pharmaceutical Research & Development, LLC; GlaxoSmithKline
    Served as a speaker or a member of a speakers bureau for: Genentech, GlaxoSmithKline

Editor

  • Rosemarie Perrin

    Editor, Preventing Chronic Disease

    Disclosures

    Disclosure: Rosemarie Perrin has disclosed no relevant financial relationships.

CME Reviewer

  • Hazel Dennison, DNP, RN, FNP, CPHQ, CNE

    Associate Director, Accreditation and Compliance
    Medscape, LLC

    Disclosures

    Disclosure: Hazel Dennison, DNP, RN, FNP, CPHQ, CNE, has disclosed no relevant financial relationships.

Medscape, LLC staff have disclose that they have no relevant financial relationships.


Accreditation Statements



In support of improving patient care, this activity has been planned and implemented by Medscape, LLC and Preventing Chronic Disease. Medscape, LLC is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

    For Physicians

  • Medscape, LLC designates this Journal-based CME activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™  . Physicians should claim only the credit commensurate with the extent of their participation in the activity

    Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 1.0 MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit.

    Contact This Provider

For questions regarding the content of this activity, contact the accredited provider for this CME/CE activity noted above. For technical assistance, contact [email protected]


Instructions for Participation and Credit

There are no fees for participating in or receiving credit for this online educational activity. For information on applicability and acceptance of continuing education credit for this activity, please consult your professional licensing board.

This activity is designed to be completed within the time designated on the title page; physicians should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity online during the valid credit period that is noted on the title page. To receive AMA PRA Category 1 Credit™, you must receive a minimum score of 75% on the post-test.

Follow these steps to earn CME/CE credit*:

  1. Read the target audience, learning objectives, and author disclosures.
  2. Study the educational content online or printed out.
  3. Online, choose the best answer to each test question. To receive a certificate, you must receive a passing score as designated at the top of the test. We encourage you to complete the Activity Evaluation to provide feedback for future programming.

You may now view or print the certificate from your CME/CE Tracker. You may print the certificate but you cannot alter it. Credits will be tallied in your CME/CE Tracker and archived for 6 years; at any point within this time period you can print out the tally as well as the certificates from the CME/CE Tracker.

*The credit that you receive is based on your user profile.

CME / ABIM MOC

Association Between Sleep Duration and Ideal Cardiovascular Health Among U.S. Adults, National Health and Nutrition Examination Survey, 2013-2016: Methods

processing....

Methods

Data source, sample, and design

We conducted a cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES), a nationally representative cross-sectional survey of noninstitutionalized civilian residents of the United States, conducted continuously in 2-year cycles [18]. NHANES uses a complex sampling strategy with a multistage stratified probability cluster design to achieve a nationally representative sample. The survey consists of in-home interviews and a medical examination of approximately 10,000 children and adults at each 2-year cycle. The medical examination component is voluntarily completed by a subset of all participants. We used 2 cycles of NHANES for our evaluation, data collected in 2013–2014 and 2015–2016. These de-identified data are publicly available.

A total of 10,068 adults aged 20 to 75 completed the medical examination component during the 2 cycles. Of those, 7,784 (77%) adults without a self-reported history of CVD (congestive heart failure, coronary heart disease, angina pectoris, myocardial infarction, or stroke), who had complete measurement of all cardiovascular health components and covariates were included in the analysis. A total of 834 respondents were excluded because of a history of CVD, 863 because they were missing CVH components, and 1,448 because they were missing covariates. Respondents could be excluded for more than 1 reason. The most common missing covariates were depression status (n = 590) and household income (n = 521).

Measures

Exposure: sleep duration. Usual weekday or workday sleep duration was self-reported by participants. In 2013–2014, this information was elicited directly by asking for the usual hours of sleep on weekdays or workdays. In the 2015–2016 cycle, usual hours of sleep were calculated by asking respondents their normal bed time and wake time on weekdays or workdays. Sleep duration was categorized as <6 hours, 6 to <7 hours, 7 to <8 hours, 8 to <9 hours, and ≥9 hours.

Outcome: cardiovascular health score. Cardiovascular health was defined according to the AHA’s ideal CVH metrics [13]. These metrics consist of 7 modifiable health behaviors and factors that were scored as ideal (2 points), intermediate (1 point), or poor (0 points) for adults, as described previously. Participants self-reported their smoking status, frequency of physical activity, and use of medications to control blood pressure, cholesterol, or diabetes mellitus. Dietary habits were reported through one or two 24-hour recalls (single day or average intake across both recalls). Ideal diet was assessed with the AHA Healthy Diet Score [13] by measuring the intake of fruits and vegetables, whole grains, sodium, fish, and sugar-sweetened beverages. Total cholesterol, hemoglobin A1c, and blood pressure were measured by trained professionals as part of the NHANES medical examination component. Hemoglobin A1c was used as a proxy for fasting plasma glucose [19,20]; otherwise, we used the established CVH criteria [13]. Briefly, the ideal criteria were never smoking or quit smoking more than 12 months ago; BMI of <25.0 kg/m2; meeting 4 to 5 of the AHA Healthy Diet Score components; physical activity of ≥150 minutes per week of moderate exercise, ≥75 minutes per week of vigorous exercise, or ≥150 minutes per week of moderate and vigorous exercise; blood pressure of <120 mm Hg/<80 mm Hg without medication; total cholesterol of <200 mg/dl without medication; and hemoglobin A1c of <5.7% without medication. The total score and number of ideal categories met by each participant were summed, and the resulting CVH score was analyzed as both continuous and categorical. For our study, overall ideal CVH was defined as meeting ideal criteria for 5 to 7 components, intermediate CVH as 3 to 4 components, and poor overall CVH as meeting 0 to 2 components. For logistic regression models, we further dichotomized the overall CVH score to ideal (5–7 categories) or not ideal (0–4 categories).

Covariates. Covariates were selected a priori based on prior literature and substantive reasoning. Participant age, sex, race/ethnicity, education level, and marital status were self-reported. The ratio of monthly family income to poverty was used as a measure of socioeconomic status, categorized as ≤1.30, >1.30 to ≤1.85, and >1.85. This measure equates to the percentage above or below the federal poverty guidelines. Depression status was measured by the 9-item Patient Health Questionnaire depression screening instrument [21]. The questionnaire scores items on a behavioral frequency scale and then dichotomizes them to none or moderate depression (0–14 points) and moderately severe to severe depression (15–27 points). Binge alcohol use was defined as drinking ≥4 alcoholic drinks per day for women or ≥5 for men, 12 or more times a year. Use of prescription sleep aids was self-reported. Reported current use of any of the following medications was considered use of sleep aid, regardless of frequency: amitriptyline, butabarbital, chloral hydrate, doxepin, estazolam, eszopiclone, flurazepam, mirtazapine, quazepam, ramelteon, temazepam, trazodone, triazolam, zaleplon, and zolpidem [22]. Nonprescription sleep aid use was not documented.

Statistical analyses

For population level estimates, a 4-year sample weight was calculated by dividing in half the mobile examination center’s sample analytic weights for the 2 cycles. Descriptive statistics were calculated, accounting for the complex survey design. We calculated unweighted frequency and weighted estimated population proportions or means. We also calculated the weighted population prevalence of each component and mean where appropriate and made comparisons by using Pearson’s χ2 statistic or the Wald test that adjusted for the survey design. Available cases were used as a sensitivity analysis and compared with estimates from the complete cases. Survey-weighted multivariable logistic regression and linear regression were used to estimate the association between sleep duration and ideal CVH, controlling for covariates. Separate models were constructed controlling for demographic characteristics (age, sex, race, race/ethnicity, education level, family income-to-poverty ratio) and social/clinical factors (depression status, alcohol use, prescription sleep aid use). A final fully adjusted model included all covariates. All analyses were conducted in STATA IC 15.1 (StataCorp LLC) at the α = 0.05 level.