This activity is intended for oncologists, geneticists, neurosurgeons, and other physicians who care for individuals with gliomas.
The goal of this activity is to evaluate modern genetic analysis techniques, specifically in cases of glioma.
Upon completion of this activity, participants will be able to:
As an organization accredited by the ACCME, Medscape, LLC, requires everyone who is in a position to control the content of
an education activity to disclose all relevant financial relationships with any commercial interest. The ACCME defines "relevant
financial relationships" as financial relationships in any amount, occurring within the past 12 months, including financial
relationships of a spouse or life partner, that could create a conflict of interest.
Medscape, LLC, encourages Authors to identify investigational products or off-label uses of products regulated by the US Food
and Drug Administration, at first mention and where appropriate in the content.
This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education through the joint sponsorship of Medscape, LLC and JNCCN - The Journal of the National Comprehensive Cancer Network. Medscape, LLC is accredited by the ACCME to provide continuing medical education for physicians.
Medscape, LLC designates this Journal-based CME activity for a maximum of 1.00
AMA PRA Category 1 Credit(s)™
. Physicians should claim only the credit commensurate with the extent of their participation in the activity.
Medscape, LLC staff have disclosed that they have no relevant financial relationships.
For questions regarding the content of this activity, contact the accredited provider for this CME/CE activity noted above. For technical assistance, contact [email protected]
There are no fees for participating in or receiving credit for this online educational activity. For information on applicability
and acceptance of continuing education credit for this activity, please consult your professional licensing board.
This activity is designed to be completed within the time designated on the title page; physicians should claim only those
credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the
activity online during the valid credit period that is noted on the title page.
Follow these steps to earn CME/CE credit*:
You may now view or print the certificate from your CME/CE Tracker. You may print the certificate but you cannot alter it.
Credits will be tallied in your CME/CE Tracker and archived for 6 years; at any point within this time period you can print
out the tally as well as the certificates by accessing "Edit Your Profile" at the top of your Medscape homepage.
*The credit that you receive is based on your user profile.
CME Released: 4/1/2011
Valid for credit through: 4/1/2012, 11:59 PM EST
processing....
Diffuse gliomas are a heterogeneous group of malignancies with highly variable outcomes, and diagnosis is largely based on histologic appearance. Tumor classification according to cell type and grade provides some prognostic information. However, significant clinical and biologic heterogeneity exists in glioma, even after accounting for known clinicopathologic variables. Significant advances in knowledge of the molecular genetics of brain tumors have occurred in the past decade, largely because of the availability of high-throughput profiling techniques, including new sequencing methodologies and multidimensional profiling by The Cancer Genome Atlas project. The large amount of data generated from these efforts has enabled the identification of prognostic and predictive factors and helped to identify pathways driving tumor growth. Implementing these signatures into the clinic to personalize therapy presents a new challenge. Identification of relevant biomarkers, especially when coupled with clinical trials of newer targeted therapies, will enable better patient stratification and individualization of treatment for patients with glioma. (JNCCN 2011;9:449–457)
The development of gene expression profiles in gliomas provides the opportunity to revolutionize the ways in which tumors are classified, and may lead to individualized treatment algorithms. Until recently, glioblastoma was thought to be a single disease entity confirmed histologically based on objective pathologic hallmarks such as vascular proliferation and necrosis.[1] Although histologic classification allowed patients with a single disease to be enrolled into clinical trials, and treatment protocols for these patients to be standardized,[2] outcomes were variable and could not be attributed to clinical characteristics alone. Recently, gene expression profiling revealed multiple glioblastoma subtypes of what was originally assumed to be a homogeneous disease. These genetic differences may explain the diverse outcomes among patients with the same histologic diagnosis. Molecular profiling offers the opportunity to improve diagnostic precision and may improve treatment outcomes through directing treatment decisions.