This activity is intended for cardiologists, internists, primary care physicians, and other healthcare providers involved in the management of patients at risk for thromboembolism.
The goal of this activity is to help physicians better understand the mechanism of coagulation and the rationale for developing new anticoagulants for long-term management of venous thromboembolism.
Upon completion of this activity, participants will be able to:
As an organization accredited by the ACCME, Medscape, LLC, requires everyone who is in a position to control the content of an education activity to disclose all relevant financial relationships with any commercial interest. The ACCME defines "relevant financial relationships" as financial relationships in any amount, occurring within the past 12 months, including financial relationships of a spouse or life partner, that could create a conflict of interest.
Medscape, LLC, encourages Authors to identify investigational products or off-label uses of products regulated by the US Food and Drug Administration, at first mention and where appropriate in the content.
Medscape, LLC is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.
Medscape, LLC designates this educational activity for a maximum of 1.0
AMA PRA Category 1 Credit(s)™
. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Medscape, LLC staff have disclosed that they have no relevant financial relationships.
For questions regarding the content of this activity, contact the accredited provider for this CME/CE activity noted above. For technical assistance, contact [email protected]
There are no fees for participating in or receiving credit for this online educational activity. For information on applicability
and acceptance of continuing education credit for this activity, please consult your professional licensing board.
This activity is designed to be completed within the time designated on the title page; physicians should claim only those
credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the
activity online during the valid credit period that is noted on the title page.
Follow these steps to earn CME/CE credit*:
You may now view or print the certificate from your CME/CE Tracker. You may print the certificate but you cannot alter it.
Credits will be tallied in your CME/CE Tracker and archived for 6 years; at any point within this time period you can print
out the tally as well as the certificates by accessing "Edit Your Profile" at the top of your Medscape homepage.
*The credit that you receive is based on your user profile.
CME Released: 7/29/2010
Valid for credit through: 7/29/2011, 11:59 PM EST
processing....
Thrombosis is a major cause of morbidity and mortality worldwide. Traditional anticoagulant therapies (heparin and warfarin), although efficacious, are associated with limitations in their utility for long-term administration. Consequently, there is an ongoing search for new anticoagulant agents. A better understanding of the biochemical pathways involved in coagulation has led to the identification of new targets for anticoagulant agents. This article reviews the key events in the cell-based model of coagulation, the rationale for current and new targets for anticoagulant agents, and the efficacy and safety of new oral anticoagulant agents in late-stage clinical development.
Coagulation is the process through which blood clots are formed at sites of injury to blood vessels. Such clots must form rapidly to arrest hemorrhage from the wound, but once formed, the clotting process must be quickly regulated to prevent the clot from expanding to the point where it obstructs blood flow. Once bleeding is controlled, the fibrinolytic system degrades the blood clot so that blood flow is restored and healing can occur.
Coagulation involves a regulated sequence of events in which a series of inactive enzyme precursors, or zymogens, become activated. The end result of this process is the timely generation of thrombin, which is also known as factor IIa (FIIa), the enzyme that not only converts fibrinogen to fibrin but also amplifies its own generation and serves as a potent platelet agonist. The original "cascade" or "waterfall" models of coagulation proposed 2 independent pathways by which coagulation could be initiated in a platelet-free environment.[1,2] Although the concept of distinct extrinsic and intrinsic pathways is useful for understanding in vitro tests of coagulation, we now know that these pathways are intricately linked. We also know that platelets and other cellular components of the blood are integral parts of the coagulation system. Building on this information, a cell-based model of coagulation has evolved in an attempt to better understand the complex reactions that occur on the surface of cells and the integration of processes that result in the formation of a platelet-fibrin thrombus.[3-5]
According to the cell-based model of coagulation, the initiating or triggering event occurs on the surface of intact tissue factor (TF)-bearing cells or cell fragments, known as microparticles, which are exposed or generated at sites of vascular injury.[4,5] Such cells include monocytes, macrophages, and smooth muscle cells among others. As a transmembrane protein, TF on the surface of these cells binds circulating FVIIa and the resultant TF:FVIIa complex initiates the generation of a small amount of thrombin (the spark). This thrombin then amplifies its own generation, which results in a burst of thrombin (the flame) that converts fibrinogen to fibrin, stabilizes the fibrin network, and activates platelets.[4,5] The precisely synchronized sequence of events is counterbalanced by a system of anticoagulant and fibrinolytic mechanisms, which serve to ensure that the hemostatic effect is regulated and does not extend inappropriately. In pathological states, these events can escape normal control mechanisms due to either inherited or acquired defects, resulting in thrombosis, which is the generation of an occlusive thrombus that obstructs or limits blood flow in an artery or vein.
Based on current knowledge of the main triggers and a better understanding of the structure and function of the key coagulation enzymes, anticoagulant therapy is moving towards targeted therapy. This article reviews our current understanding of the coagulation system, identifies the major enzymes in this pathway, and provides a rationale for the selection of targets for novel anticoagulants.